
1

Learning Rough-Terrain Autonomous Navigation
J. Andrew Bagnell, David Bradley, David Silver, Boris Sofman

Robotics Institute, Carnegie Mellon University

Abstract—Autonomous navigation by a mobile robot through
natural, unstructured terrain is one of the premier challenges
in field robotics. The DARPA UPI program was tasked with
advancing the state of the art in robust autonomous performance
through challenging and widely varying environments. In order
to accomplish this goal, machine learning techniques were heavily
utilized to provide robust and adaptive performance, while simul-
taneously reducing the required development and deployment
time. This paper describes the autonomous system, Crusher,
developed for the UPI program, and the learning approaches
that aided in its successful performance.

Index Terms—Field robotics, machine learning.

I. INTRODUCTION

Autonomous robots capable of navigating in challenging
unstructured terrain have many potential commercial, indus-
trial and military applications. Tremendous advances in au-
tonomous navigation have been made recently in field robotics
[?], [?], [1]; machine learning has played an increasingly
important role in these advances. The DARPA UPI program
was conceived to take a fresh approach to all aspects of
autonomous outdoor mobile robot design: from vehicle design
to the design of perception and control systems. The essential
problem addressed by the UPI program is to enable safe
autonomous traverse of a robot from Point A to Point B in
the least time possible given a series of waypoints separated
by 0.2 km to 2 km.

Development on the UPI program was driven by extensive
field testing on unrehearsed terrain to meet key metrics in
off-road speed and required human interventions. These tests
were conducted in extremely challenging terrains, including
everything from temperate forests to high deserts, and re-
quired negotiating steep slopes, large boulders, deep washes,
and dense vegetation. In the complex terrain considered, it
was recognized that some human intervention was inevitable,
although performance metrics strictly limited that availability.
A more in-depth discussion of the program as a whole, as well
as the autonomy components of the program can be found in
[?], [2].

The UPI program required new approaches to meet pro-
gram speed and time-between-intervention goals that were
approximately an order of magnitude greater than anything
autonomous robots had previously achieved in such complex
terrain. In particular, the diversity of obstacles, vegetation, and
terrain overwhelmed approaches based on hand-engineering
all aspects of the system using the traditional algorithmic
tools of field robotics. Instead, the UPI team combined proven
engineering techniques developed within the field including
model-predictive control [?], [1], 3D LADAR analysis [1], [4],
and fast motion re-planning [5], with data-driven, machine-
learning approaches. This synthesis enabled us to “program-

Fig. 1: Spinner (left) and Crusher (right) robots used throughout the
UPI program. The natural terrain shown here is representative of the
domains they operate within.

by-demonstration” some of the most challenging aspects of the
problem, including, for example, the automatic interpretation
of ambiguous sensor data, as well as to adapt the system’s
performance automatically to novel, previously unseen terrain.

Below we lay out the core elements of this approach to
mobile robotics and the key role played by machine learning
in improving performance, enabling non-experts to modify
the system, and leading to dramatic reductions in engineering
time and effort. The learning approaches that enabled this
performance span a diversity of techniques within the ma-
chine learning field including: classification and regression,
self-supervised learning, imitation learning, online (no-regret)
learning, and iterative learning control. Learning techniques
are nearly ubiquitous in our approach, touching the full
array of subsystems on the Crusher platform including near-
range LADAR analysis, far-range monocular and stereo image
interpretation, overhead imagery and height map analysis,
local and global motion planning, motor control, and vehicle
positioning.

The adaptive techniques presented here, when combined
with the non-adaptive algorithmic approaches and inherent
vehicle mobility, have arguably achieved the state-of-the-art
in outdoor, complex terrain autonomy. We discuss some of
the extensive experimental testing and validation of these
techniques. We conclude with a discussion of the key lessons
learned on the integration of learning into autonomous systems
and the many challenges that remain in achieving high-
performance autonomy while maximizing the value of col-
lected data and minimizing engineering time and effort.

II. CRUSHER AUTONOMOUS SYSTEM

The Crusher UGV of the UPI Program (shown in Figure
1 with its predecessor, Spinner) was designed to navigate
autonomously through complex, outdoor environments, using
a combination of LADAR and camera sensors onboard the
vehicle as well as satellite or other prior overhead data when



2

Fig. 2: Crusher’s autonomous navigation system combines data from
camera and LADAR sensors onboard the robot with previously
collected satellite imagery to find safe and efficient paths through
complex off-road environments.

available [2]. Figure 2 outlines the high level data flow within
the Spinner and Crusher autonomy systems.

Figure 2 hides crucial practical details of the system,
including positioning, expiration of data, and inter-process
communications and timing, but captures the core elements of
the system important for a discussion of the role of machine
learning. The various modules and heuristics used in the
autonomy system contain a large number of settings and
parameters. Manually engineering a good set of parameters
for these modules is both difficult and time consuming. A
key principle of the approach taken on the UPI program is
to learn the parameters of the system from data or human
demonstration wherever possible. As will be discussed in
the following sections, Crusher’s reliable performance was
achieved by developing and applying state-of-the-art learning
techniques for supervised learning, self-supervised learning,
and unsupervised learning through this data-flow architecture.
Space limits our ability to discuss all of the learning modules
throughout the system, and thus we focus on a few that were
especially critical to the results of the overall system.

Crusher’s onboard perception system is divided into two
modules. A near-range perception system uses a combination
of onboard camera and LADAR sensors to produce a continu-
ously updating high resolution model of its environment out to
a range of 20 m. These models consist of various geometric or
appearance based features assigned to individual 3-D voxels1.
Supervised learning (Section III-A) is used to classify 3-D
voxels into “ground”, “obstacle”, and “vegetation” classes
from a set of labeled terrain examples. In addition, a far-
range perception system produces a lower resolution model
out to a range of 60 m. Due to the limited sensor resolution
and sparse LADAR returns from distant objects, properly
interpreting far-range data is quite difficult. Section III-D
describes a powerful self-supervised learning technique that
was developed to “bootstrap” the far-range perception system
using the output of the near-range system. In addition, both
the near-range and far-range modules maintain an estimate of
the local terrain supporting surface (Section III-B).

A useful and common abstraction for navigation is to

1A “voxel” is the 3-D equivalent of a pixel

represent the world as a 2-D horizontal grid around the robot
(see Figure 3) [1]. Navigation through the environment is
achieved by first producing a traversal cost for driving through
each cell in the 2-D grid and then planning the minimum
cost path through the grid. These costs are generated as a
function of the features associated with each 3-D voxel within
the appropriate 2-D column. In practice, it is remarkably diffi-
cult to hand-engineer an effective mapping from perceptual
features to traversal costs that produces plans and vehicle
behaviors that correspond to our expectations– identifying
such cost functions from limited and ambiguous perception
data is effectively a “black art” for mobile robotics. The UPI
program developed novel techniques for imitation learning that
allow a cost function to be learned directly from examples of
preferred driving behavior (Section IV-A). These costs, along
with costs generated from available prior overhead data, are
then merged and passed on the Crusher’s planning system. The
processing of overhead data mirrors that of Crusher’s onboard
perception system, and is described in Section III-C.

The planning system utilizes a hybrid global/local approach
[1] that continuously replans to take into account new infor-
mation. The long-range global path to the goal is computed
by finding a minimum cost path through the map using the
Field D* algorithm [5]. The output of the global planner is
refined by the local planner in a kinematically constrained
search over a small area around the robot, where it is able to
plan sophisticated actions and maneuvers that incorporate the
robot’s mobility and dynamics [?]. Planning such maneuvers
requires an accurate model of the vehicle motion produced by
a given set of control signals. As Crusher is a 6 wheeled skid-
steer vehicle, vehicle motion can be quite difficult to model;
therefore self-supervised learning was applied (Section IV-B)
to learn the vehicle’s response to control inputs and improve
its ability to follow commanded paths.

Fig. 3: Abstraction of the mobile robot navigation problem. Sensor
data is used to estimate traversal costs for each cell in a 2-D grid
around the robot. An efficient planning algorithm is then used to find
the minimum cost path (green line) to a goal (red X) defined by a
set of GPS coordinates.

III. TERRAIN PERCEPTION

Crusher employs learning-based perception modules for
spatial regions close to the vehicle, farther from the vehicle,
and areas which are outside of the range of the vehicles
onboard sensors, but for which there is available satellite or
aerial data.



3

A. Near-range Terrain Classification
A set of LADAR scanners collect 3-D range data while

cross-calibrated color and near infra-red (NIR) cameras deter-
mine appearance data from the vehicle’s surroundings. Within
20 meters of Crusher, these sensors provide abundant data
for terrain analysis. The input to the near-range perception

Fig. 4: The camera and laser data captured by the sensors onboard
the mobile robot are used to compute a set of engineered features.
Here a few of the features are shown projected into the image from
one of the onboard cameras.

system consists of 3-D points from the LADAR that have
been projected into the camera images and “tagged” with local
properties of the image such as color, and image texture. The
local perception system discretizes the space surrounding the
robot into a 3-D grid of voxels and computes features of the
tagged points over each voxel. Examples of some of these
engineered features are shown in Figure 4, and they include
the averages of the point tags, eigenvalues of the local point
cloud scatter matrix [4], the surface normal (3rd eigenvector
of the scatter matrix), and the probability and strength of
laser pulse reflection from the voxel. A particularly useful
feature for vegetation detection was the average Normalized
Difference Vegetation Index (NDVI) value of each voxel,
which is computed from the red and near-infrared color tags
of each point [?]. NDVI was developed in the satellite imaging
community to exploit the unique spectral properties of small
water-filled plants cells that contain chlorophyll. Figure 5
shows vegetation highlighted in bright green that was detected
using NDVI on a pair of color and NIR images.

Fig. 5: Left: vegetation detected with the NDVI feature is highlighted
in bright green. Right: original color and NIR images. Note how
bright vegetation appears in NIR.

The engineered features are then classified with a multi-
class logistic regression (MaxEnt) classifier into “ground”,

“vegetation”, or “obstacle” classes, using a labeled data set
of over 4 million voxels collected from a variety of test
environments. Collection of such a large data set was made
feasible by the development of an intuitive image-based voxel
labeling tool. In some terrains, the wide variety of examples
included in the labeled training set actually hurt classifica-
tion performance. For example, the NDVI feature improves
performance in terrains (and seasons) where chlorophyll-rich
vegetation is abundant, but over-dependence on NDVI hurts
classification performance in areas with dead or desert-type
vegetation. To fix this problem, a method was developed [17]
to automatically adapt the terrain classifier to the environment
the robot is currently operating in. The unlabeled voxels the
robot is trying to classify are used to give more weight to
similar examples from the labeled data set, and the classifier
is retrained on the reweighted data set.

Figure 6 visualizes the output of the near-range classifi-
cation system on a forest scene in Colorado. The terrain
classification of each voxel is combined with a ground height
or terrain surface estimate for each 2-D cell to produce a
traversal cost estimate for each voxel, using the imitation
learning techniques described in Section IV-A.

Fig. 6: Classified voxels in a forest scene.

B. Terrain Surface Estimation

A central element of successful rough terrain navigation
systems is the estimation of the terrain supporting surface.
Identifying the surface enables the autonomy system to de-
tect hazards due to its shape including high grades, ditches,
holes or high-centering hazards. Further, identifying obstacles
requires knowing where the ground is– a tree limb at the level
of the sensors can potentially disable the robot, while at a
higher elevation it may not interfere at all.

Unfortunately, identifying the ground surface is complicated
by vegetation, occlusion, and sparsity in LADAR point density
(see Figure 7). Identifying this surface is perhaps more nat-
urally viewed as an estimation problem then one of machine
learning. Indeed, while our approach builds on past work in
this area [1], [6], we determined that a method from the online
learning community provided a remarkably fast and effective
algorithm.

Our approach to estimation leverages the notion, developed
in [1], that each LADAR “point” from the sensor is truly a
ray from the sensor to a point in the world and that this ray
defines a “space-carving” constraint on the ground supporting
surface– at any two-dimensional discretized grid location in
the world the surface must lie beneath that ray. This approach
makes sparse LADAR data dramatically more effective for



4

Accurate Rough Terrain Estimation with
Space-Carving Kernels

Raia Hadsell
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

J. Andrew Bagnell
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Martial Hebert
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract— Accurate terrain estimation is critical for au-
tonomous offroad navigation. Reconstruction of a 3D surface
allows rough and hilly ground to be represented, yielding faster
driving and better planning and control. However, data from
a 3D sensor samples the terrain unevenly, quickly becoming
sparse at longer ranges and containing large voids because
of occlusions and inclines. The proposed approach uses online
kernel-based learning to estimate a continuous surface over the
area of interest while providing upper and lower bounds on
that surface. Unlike other approaches, visibility information is
exploited to constrain the terrain surface and increase precision,
and an efficient gradient-based optimization allows for realtime
implementation.

I. INTRODUCTION

Terrain estimation is a critical component of mobile robot
navigation, but accurate reconstruction of rough, hilly, and
cluttered terrain is very difficult. The distribution of data points
from a 3D sensor on a mobile robot decays rapidly away from
the scanner, and there may be large ground regions that return
no points at all. This variable resolution is inevitable as it is
due to discrete sampling, use of static scanning patterns, and
application to terrain whose geometry is unknown a priori.
Indeed, if the sampling density is dense enough, such as in
scanned 3D objects (Figure 1a) or regular enough, such as
on smooth roads (Figure 1b), then 3D reconstruction offers
less challenge. In rough outdoor terrain, however, complex
natural geometry, uneven ground, and inclines all exacerbate
the problem and make accurate terrain estimation difficult
(Figure 1c).

Variable distributions make terrain estimation very chal-
lenging, and many autonomous systems truncate their terrain
model to relatively short ranges or make do with a flat, 2D
cost map for this reason. Our approach exploits the visibility
aspect of laser scanning to improve the terrain estimate even
in sparse regions. Data points from a ladar sensor must be
visible to the sensor; i.e., the rays connecting sensor source
to data points must lie above the terrain surface. Thus, the
elevation function can be constrained by both the ladar points,
which must lie on the surface, and the ladar rays, which
must lie above the surface. This can be thought of as a
space carving approach, since it uses visibility information.
The new visibility constraints are incorporated in an RKHS
kernel framework rather than a voxel-based approach, yielding

a. b. c.

Fig. 1. Evenly sampled 3D objects (left) and laser scans on smooth roadways
(center) do not offer the same reconstruction challenges as scans of rough
terrain (right), which often have complex structure and very variable resolution
that decays rapidly with distance.

a continuous surface estimate with high accuracy that smooths
noisy data.

Many approaches simplify the problem considerably by rep-
resenting the terrain as a flat cost map, but this is insufficient
for modeling offroad terrain because hills and rough ground
are not accurately represented, forcing the vehicle to drive at
very low speeds and make conservative decisions. However,
an explicit 3D model of the world, based on points and
triangulated meshes, is infeasible: this sort of representation is
very expensive, and mesh interpolation over complex terrain is
non-trivial. Elevation maps provide a simplification of the full
3D model, but cannot represent overhanging structures and are
limited to a fixed resolution by a discretized grid. If the terrain
is represented by a continuous elevation function, however,
then the effect of the ground on the vehicle can be more
precisely predicted, allowing for faster autonomous driving
and longer range planning. Modeling the terrain as a 3D
surface is difficult because of the sparse, uneven distribution
of 3D sensor data. Current methods use interpolation to create
a continuous mesh surface, but this can be very difficult if the
terrain is complex and the data is sparse. In our approach,
the 3D surface is modeled as a elevation function over a
2D domain. This surface is estimated using kernel functions,
which allow non-linear, complex solutions.

In order to learn the elevation function, we propose a kernel-
based approach that models the surface as a hypothesis in a
reproducing kernel Hilbert space (RKHS). Using a kernel for-
mulation provides a principled means of optimizing a surface
function that can produce a highly nonlinear solution. In order

Fig. 7: LADAR scans of rough terrain often have complex structure
and highly variable resolution that decays rapidly with distance.

to pose the problem as an RKHS regression constrained by
visibility information as well as surface points, we incorporate
the space-carving constraint into the mathematical framework
and give a rule for functional gradient descent optimization,
yielding an efficient realtime program. The proposed method
is evaluated using LADAR datasets of rough offroad terrain.

II. RELATED WORK

Kernel-based surface estimation has been adopted by the
graphics community in recent years for modeling 3D scanned
objects [16, 21, 20]. These approaches fit radial basis functions
to scanned surface points, yielding an embedding function
f . The zero-set f−1(0) implicitly defines the surface. The
advantages of using radial basis functions to model the surface
of a scanned 3D object are that noise and small holes can
be dealt with smoothly, and multi-object interactions can be
efficiently computed. However, these approaches cannot be
directly applied to terrain data gathered from laser rangefinders
mounted on a mobile robot. Such data is dense and precise at
close range, but quickly degrades at longer ranges, where the
surface is sparsely and unevenly sampled. Given such data, an
implicit surface function is ill-constrained and often results in
a degenerate solution.

Explicit elevation maps are a standard approach for mod-
eling rough terrain for mobile robotics. There are many
strategies for building these maps, from mesh algorithms to
interpolation to statistical methods [3, 1, 11].

Burgard et al., following on the research done by Paciorek
and Schervish [10, 4], have successfully applied Gaussian
process regression to the problem of rough terrain modeling,
although their approach is computationally expensive and has
not been applied to large datasets [13, 12, 9]. Burgard’s
research adapts Gaussian process regression for the task of
mobile robot terrain estimation by considering issues such as
computational constraints, iterative adaptation, and accurate
modeling of local discontinuity. Our approach uses a kernel-
based methodology as well, but we propose an iterative
algorithm that exploits both ray and point information to fit
basis functions to solve a system of constraints.

Using ray constraints, or visibility information, to improve a
3D surface model has rarely been proposed in mobile robotics.
Space carving algorithms, originally suggested by Kutulakos,
use visibility information to produce a voxel model from
calibrated images of a scene [7, 18], but this strategy has
not been adopted by the ladar community. Another approach
that exploited the visibility constraints was the locus method
of Kweon et al. [8]. These approaches produced discrete
maps, rather than continuous elevation functions, and relied on
unwieldy heuristics to ensure that the map had desirable prop-
erties such as a watertight surface. In contrast, the approach
we propose exploits visibility information while learning a
continuous, bounded surface.

Fig. 2. Visualization in 2D of the point- and ray-based constraints on a
terrain elevation function. The estimated surface must intersect the data points
(“sensor hits”) and lie below the visibility rays from the sensor. If there is a
violation of the ray constraint, a support kernel function is added at the most
violating point x.

III. KERNEL-BASED REGRESSION FOR TERRAIN
ESTIMATION

Given a set of 3D points from a sensor mounted on a mobile
robot, we seek to estimate a continuous elevation function
f(x, y) = z that both intersects the data points and does
not exceed the height of the rays connecting sensor and data
points. A 2D example, in which the elevation map intersects
the data points but violates the ray constraint, is shown in
Figure 2. The dataset S consists of n tuples, each with a
3D point (xi, yi, zi) and a corresponding 3D sensor location
(sxi, syi, szi), which are summarized as a point xi = [xi yi],
a height zi, and a line segment, or ray, connecting source and
point, which we denote by si. The projection of si on the XY
plane is denoted ŝi, and the function gi(·) is used to denote
the height of si at a given point (gi = ∞ at every location
that does not intersect ŝi). Given this data, we learn a function
that meets both a point-based constraint (3) and a ray-based
constraint (4):

Given S = {(x1, z1, s1), (x2, z2, s2), ..., (xn, zn, sn)} (1)
find f : R2 → R (2)
s.t. f(xi) = zi ∀ xi, (3)

f(x) ≤ gi(x) ∀ si,x. (4)

In order to solve this problem for complex surfaces and
datasets, we use a kernel formulation whereby distances be-
tween points can be computed in a high-dimensional feature
space without actually computing the coordinates of the data
points in the feature space, since any continuous, symmet-
ric, positive semi-definite kernel function k(xi,xj) can be
expressed as a dot product in a high dimensional space. Thus
the height function f(x, y) is a hypothesis in RKHS and can
be expressed by a kernel expansion:

f(x, y) = f(x) =
n∑

i=1

αik(x,xi), (5)

where k(·, ·) is a radial basis function and α are learned coeffi-
cients. For efficiency, the kernel function k(·, ·) is a compactly
supported kernel suggested by Wu [15] (see Figure 3):

k(xi,xj) = k(ρ(xi,xj)) = (1− ρ)4+(4 + 16ρ + 12ρ2 + 3ρ3),
(6)

Fig. 8: Constraint on ground supporting surface implied by space-
carving rays.

upper bounding the ground at each location than if only the
reflection points were considered [7]. In practice, however,
this approach remains insufficient in areas where data is
especially sparse and particularly where there is vegetation. In
[6], the authors develop a Markov Random Field (MRF) based
technique over three-dimensional voxels that estimates terrain
supporting surface by leveraging contextual information from
neighboring cells using a computationally demanding Markov-
Chain Monte Carlo procedure.

On the UPI program, these ideas are combined in a two-
dimensional MRF formed with a random variable representing
height at each location. This random field uses both LADAR
points and terrain classification to establish potentials between
the random variables– for instance, if terrain classification
detects bare earth, the random field strongly enforced the
ground height at that location. More complete details of the
approach including a detailed description of the random field
and its interaction with terrain classification can be found in
[?]. The connection with machine learning is perhaps a bit
surprising: the fast, anytime estimates of the ground plane
necessary for autonomous navigation were made possible by
the use of the online projected gradient convex optimization
described in [8] to iteratively infer the most probable height
of the supporting surface at each 2-D location. At every
iteration, the optimization takes a gradient step by moving
each cell’s ground estimate along the vertical axis towards
a position suggested by the neighbors of that cell, effectively
anisotropically smoothing the ground heights. Each cell is then
projected onto the constraint implied by the LADAR rays; if
the estimate goes above the lowest point along any ray that
intersects a cell, the estimate is clamped back onto that value
(see Figure 8 for a visualization).

Recently the online optimization space-carving notion has

been extended by combining with Gaussian process priors to
provide a discretization-free estimate of the terrain supporting,
again using an effective sub-gradient descent approach [7].

C. Overhead Terrain Perception

When the length of an autonomous traverse greatly exceeds
the range of a robot’s onboard sensors, prior knowledge of the
environment can improve autonomous safety and efficiency
by guiding the robot over more easily navigable terrain [9].
The overhead vantage point is an attractive source of such
prior knowledge. Satellite imagery can now be commercially
purchased at high resolution, and can be augmented with
digital elevation maps or aerial LiDAR scans. While the wide
variety of available data sources increases the available prior
knowledge, the heterogenous nature of the data can make
processing and interpretation difficult.

In order to reduce the degree of engineering and human
effort that must go into processing overhead data sets from
multiple sources, learning techniques were used extensively.
At a high level, the processing of overhead data mirrors
the approach used for near-range perception (Section III-A).
First, the available raw data sets are processed into a set of
feature maps (e.g. color, texture, and NDVI for imagery and
slope, canopy cover, and other geometric features for LiDAR).
Along with these features, human labeling of terrain is used
as input into a supervised semantic classification (specifically
a convolutional neural network) [9]. This approach has the
advantage that it is easily adaptable to different environments
without additional feature engineering; it only requires a
brief human labeling effort. Additionally, when aerial LiDAR
scans are available, a terrain surface estimation procedure is
performed, based on the same basic algorithm as Section
III-B. As with near-range perception, terrain classification is
a useful but not necessary input to this procedure. A notable
difference is that the sensor origin is often not provided with
commercial aerial LADAR; however the generally low angle
of incidence means the location of each point in space is a
sufficient constraint. After processing, refined overhead data
(visual and geometric features plus semantic classifications)
are converted into traversal costs to be fused with onboard
data; the learning procedure for this conversion is described
in Section IV-A.

D. Bootstrapped Far-range Terrain Perception

Roboticists often equip UGVs with powerful sensors and
data sources to deal with uncertainty, only to discover that the
UGVs are able to make only minimal use of this data and still
find themselves in trouble. As described previously, overhead
data has the potential to greatly enhance autonomous robot
navigation in complex outdoor environments. Likewise, the
ability to interpret terrain well at a far distance from onboard
sensor data can help the robot find out about the world as early
as possible, allowing it to construct more globally efficient
paths and reduce risk. In practice, reliable and effective
automated interpretation of such data from diverse terrain,
environmental conditions, and sensor varieties proves to be
challenging.



5

Fig. 9: Examples of overhead data over a 1 km2 area. From left to right: satellite imagery, extraction ground surface height, tree canopy,
semantic classification. Quickbird satellite imagery courtesy of Digital Globe, Inc.

As a result, a system that needs to perform reliably across
many domains without re-engineering by hand or supervised
training must rely on only the subset of available information
that generalizes well across many domains. Due to the data
accuracy, consistency and density required for such features,
this often limits a system to utilizing only onboard sensor data
within a short proximity to the vehicle.

The UPI program employed a bootstrapping system in
order to be able to take advantage of all potentially useful
data sources. In [10] we introduced a Bayesian probabilistic
framework for learning and inferring between heterogeneous
data sources that vary in density, accuracy and scope of
influence. Here we present a specific instance of this frame-
work that takes advantage of an accurate and robust near-
range perception system to extend the perception range of the
robot by interpreting any combination of overhead and far-
range sensor data with online, self-supervised learning. When
dealing with overhead data, our algorithm will be referred to
as MOLL (Map On-Line Learning) and when dealing with far
range sensor data, our algorithm will be referred to as FROLL
(Far-Range On-Line Learning).

Fig. 10: Abstraction of the online bootstrapped far-range perception
system. The near-range perception system generates traversal cost
estimates in proximity to the robot (blue region) that are used to
learn the mapping from difficult to interpret locale-specific features
to traversal cost. This learned model can then be applied elsewhere
to produce traversal cost predictions where no near-range perception
estimates are available.

The intuition behind this approach is visualized in the
scenario shown in Figure 10. Our goal is to produce traver-
sal cost estimates for the environment we are operating in.
Throughout the robot’s traverse, it observes a sequence of

features generated from overhead data and far-range sensor
data (we’ll call these our locale-specific features, x). Initially,
it does not know how to interpret these features.

The robot also observes a sequence of traversal cost es-
timates, c̃, generated from the near-range perception system
for a small subset of the environment that we assume are the
true traversal costs, c, with some amount of uncertainty. These
estimates are gathered online and are only available for a small
subset of the locations in the world while the locale-specific
features are available for many more locations.

By remembering the locale-specific features, x, seen during
traversal, the subset of these locations for which the near-range
perception system has generated estimates, c̃, are used to learn
a mapping2 from x to c. As the robot traverses through the
environment, it refines this model online3.

We choose a simple model for traversal costs given locale-
specific features which models the distribution of the traversal
costs as a Gaussian with constant variance and a mean
produced by a linear function of the features. This allows
us to develop the inference for this linear-Gaussian model in
an online fashion by revising the posterior distribution of the
model in light of a new Gaussian likelihood that takes into
account noise from all features.

This approach offers many advantages including reversible
learning (useful when multiple traversal cost estimates of dif-
ferent quality become available for a single location), feature
selection, and confidence-rated prediction.

While the system’s near-range perception system was effec-
tive in a majority of situations, the extended perception range
resulted in significantly faster and safer navigation (see Section
V). The successful use of this system removed any necessity
for engineering an independent far range perception system.

IV. VEHICLE PLANNING AND CONTROL

A. Coupling Perception and Planning

The coupling of Crusher’s perception and planning systems
is achieved through the notion of traversal or mobility costs.
Scalar cost values assigned to patches of terrain concretely

2Since we are using a linear model, it is more fitting to learn to predict
log(c) rather than c which is exponential in nature.

3We found that accuracy can be increased by utilizing a layered approach
where we learn online to classify locations into ground and non-ground objects
and then learn a separate model for each category.



6

(a) (b) (c)

Fig. 11: Comparison of paths executed for shown situations when using only on-board perception (in solid red) and with MOLL (in dashed
blue) and FROLL (in dotted cyan) are shown in (a). In (a) the course started at the top right and ended at the left. Predictions of terrain
traversal costs for the environment by our bootstrapping perception system at the times the vehicle chose to avoid the large cul-de-sac in front
of it are shown for MOLL in (b) and for FROLL in (c). Traversal costs are color-scaled for improved visibility. Blue and red correspond to
lowest and highest traversal cost areas, respectively, with roads appearing in black. In (b) MOLL helped the vehicle avoid the area of dense
trees by executing a path that is 43% shorter in 73% less time while in (c) FROLL helped the vehicle identify a lack of opening and avoid
traversing deep into dense and hazardous vegetation.

describe the relative preferences between different areas. As
the planning system seeks to minimize accrued cost, the cost
function implicitly defines Crusher’s driving style, e.g. how
aggressive it will be. A well designed cost function is essential
to robust autonomous performance.

Despite the importance of robust cost functions, the task
of developing them has previously received little effort. As a
result cost function design is often something of a black art,
with functions simply manually engineered on a case by case
basis. While such manually engineered cost functions can and
have produced high performance systems, they often require
an enormous investment of human resources to continually
design, tune, and validate; further it is often unclear if an
optimal coupling has been achieved. Such effort must be re-
invested with every modification to the perception or planning
subsystems.

While the design of cost functions for both near-range
perception and overhead data originally involved manually
engineering, later efforts focused on more formal approaches.
Specifically, a learning-from-demonstration framework was
developed that allowed cost functions to be learned from ex-
ample vehicle behavior produced from human domain experts4

This approach is based on the concept of inverse optimal con-
trol in which the metric for an optimal controller is determined
from examples of optimal trajectories. Our learning from
demonstration approach is an algorithm known as Learning
to Search (LEARCH) [11]. The input to the algorithm is a
set of example paths representing the expert’s preferred path
between a specific start and goal location. LEARCH searches
for a cost function that meets the constraint that every example
path should be the optimal path between its own start and end
location. As there is usually no cost function that will satisfy
the constraints of a large set of examples, this search takes the
form of a soft constrained optimization, trying to minimize

4That is, the expert must be sufficiently familiar with the environment and
the vehicle capabilities to produce good example behavior, but need not to be
an autonomy expert

the difference between the cost of each example path and its
current corresponding planned path.

This objective function can be minimized by computing
the gradient with respect to the costs of individual patches of
terrain. As the cost of a path is simply the cost of the terrain it
traverses, the local gradient is simply made up of the locations
along each path; That is, the objective can be minimized
by raising the cost of locations along the current plan, and
lowering the cost of locations along the expert example. By
using a gradient boosting procedure [12], a generalizable and
(potentially) non-linear cost function can be constructed using
standard classification or regression techniques. Figure 12
provides a visual example of this procedure in action with
overhead data as an input. By accounting for the dynamic
and partially unknown nature of onboard perceptual data,
a similar procedure can learn a cost function for the near-
range perception system from expert tele-operation of Crusher
[13]. A cost function is not learned specifically for the far-
range perception system; instead the bootstrapping procedure
described in Section III-D automatically adapts to the learned
near-range function.

B. Vehicle Modeling

An important component of the local planning system is
predicting the motion that the vehicle will experience in the
next few seconds for a given set of motor commands. Because
Crusher is a skid-steered vehicle that has complex interactions
with slippery, unknown terrain, it proves difficult to construct
a traditional high-fidelity, physics-based vehicle model. When
going up hills, the vehicle’s wheels often slip, reducing the
“along-track” velocity that the vehicle is trying to achieve in
its intended direction of travel, and often introducing “cross-
track” velocities perpendicular to the vehicle’s heading. Turn-
ing on slopes is particularly prone to slip, and failure to predict
the vehicle’s motion correctly can result in collision with
obstacles. To account for wheel slip, the UPI system predicts



7

Fig. 12: An example of the LEARCH algorithm learning to interpret satellite imagery (Top) as costs (Bottom). Brighter pixels indicate
higher cost. As the cost function evolves (left to right), the current plan (green) recreates more and more of the example plan (red).

the vehicle’s motion out to a 3-second time horizon using a 24-
layer deep neural network [14]. This neural network predicts
the along-track and cross-track velocities the vehicle will
experience, as well as the vehicle yaw. The velocity estimates
are integrated to produce a predicted path for the vehicle. The
current pose (pitch and roll) and velocities provided by the
vehicle’s IMU, as well as the commands that will be provided
to the motors in the 3-second window are used as input. The
ground surface estimate discussed in Figure III-B is used to
predict the pitch and roll that the vehicle will experience in
future locations.

The predictor is trained from logs of the commands sent to
the vehicle motors and the actual motion of the vehicle from
the inertial navigation system. Such deep neural networks are
considered difficult to train because prediction errors often
cascade into large output errors and due to difficult “credit
assignment” required to determine how the many parameters
in initial layers of the network influence the final output.
This network was successfully learned by adding “local”
information to each hidden layer of the network based on
the difference between the predicted and actual velocities of
the vehicle at each 0.25s interval, leading to a 59% reduction
in error over a previous conventional physics-based vehicle
model.

V. EXPERIMENTS

Over the course of the UPI program, numerous large field
tests were conducted at various sites across the continental
U.S. These tests were conducted in an unrehearsed manner;
there was no prior exposure of either the robot or the autonomy
team to the test site, and only minimal time (generally a single
day) was provided for any additional training of the system.
Despite these constraints, impressive results were achieved.
The Crusher and Spinner vehicles autonomously traversed
more than 1000 km across difficult terrain, often averaging
human intervention as little as once every 20 km.

As the focus of this testing was overall system performance,
it was not always possible to quantify the effect of various
learning techniques, nor even to attribute a performance im-
provement to a specific approach5. However, for a subset of the

5As the motivation behind many of the learning components was the
infeasibility of an engineered approach, there are several instances where no
engineered module for comparison was ever implemented

Local Only MOLL FROLL
1450

1500

1550

1600

1650

1700

1750

1800

1850

Distance traveled (m)

Local Only MOLL FROLL
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Average Speed (m/s)

Fig. 13: Over many comparison runs, the bootstrapped far-range
perception system was shown to outperform the baseline system using
only near-range perception in both distance of travel required and
average speed.

implemented learning techniques it was possible to perform
specific comparison experiments.

The bootstrapped perception system approach was tested
with both overhead data and far-range sensor data to measure
its impact on navigation performance compared to a system
using only the near-range perception system. The test environ-
ments contained a large variety of vegetation, various-sized
dirt roads (often leading through narrow passages in dense
vegetation), hills, and ditches.

The vehicle traversed several courses defined by a series
of waypoints using only its on-board perception system for
navigation. It then traversed the same courses with the help of
our bootstrapping approach. First, MOLL was applied using
40 cm resolution overhead imagery and elevation data to
supplement the on-board perception system with traversal cost
updates computed within a 75 m radius once every 2 seconds.
Next, FROLL was used to interpret and make predictions
from far-range sensor data every 1 second. The algorithm was
initialized for each course with no prior training to simulate
its introduction into a previously unencountered domain.

Quantitative results can be seen in Figure 13 and a sample
scenario where such an approach is especially valuable can be
seen in Figure 11. In general, we found that both techniques
not only improved the quality of the paths chosen by the
vehicle but also allowed higher speed navigation by increasing
the time the vehicle had to react to upcoming obstacles and
identifying safer terrain such as roads. By learning online
to leverage potentially powerful, but difficult to generalize,
features from overhead and far-range sensor data, our system
is able to use all potentially useful data sources and to
adapt to changing conditions without the necessity of human-



8

Learned Engineered
2.2

2.25

2.3

2.35

2.4

2.45

2.5

Average Speed (m/s)

Learned Engineered
0

5000

10000

15000

20000

25000

30000

35000

40000

Total Traversal Cost

Fig. 14: Comparing performance over an approximately 12 km
course, Crusher drover faster and went over safer terrain (as scored
independently by onboard perception) when using a learned interpre-
tation of prior data.

Learned Engineered
3.15

3.2

3.25

3.3

3.35

3.4

Average Speed (m/s)

Learned Engineered
0

1

2

3

4

5

6

7

Average Angular Velocity (deg/s)

Learned Engineered
0

2

4

6

8

10

12

14

Frequency of Direction Switch

Fig. 15: Comparing performance over approximately 35 km of
autonomous traverse, Crusher drove faster, turned softer, and changed
direction yes when using a learned cost function. In addition, there
was not statistically significant difference in safety between the two
systems [15].

supervised retraining or engineering. Additional results and
applications are presented in [10].

At the beginning of the UPI program, manually engineered
and tuned cost functions were used for both near-range
perception and overhead data. Creating cost functions for
overhead data was especially time consuming; as each test
site consisted of data sets of varying source and quality, a new
cost function was generally required for each site. Creating and
validating these cost functions usually involved several days of
an engineer’s time. Midway through the program, this process
was changed to make use of the learning from demonstration
approach of Section IV-A. In contrast, the learning approach
would only require several hours of expert interaction to
produce a training set, and resulted in cost functions that
produced more desirable long range plans [15]. In addition,
the online performance of the system improved; Crusher was
shown to drive faster and through safer terrain when using
a learned interpretation of overhead data than when using an
engineered interpretation (see Figure 14) [16].

Throughout a majority of the UPI program, a manually
engineered cost function was used for near-range perception.
While this resulted in a high performance system, it came
at a high cost, requiring hundreds of engineer-hours of de-
velopment spread over a three year period. Once an effort
was undertaken to apply learning from demonstration, another
significant time savings was realized (even though training
the system in this context required an expert to actually tele-
operate Crusher). The final training set used to train the system
consisted of less than a full day of examples (collected piece
by piece over different terrains). A large set of comparison
experiments demonstrated the learned interpretation of near-
range perceptual data to provide an equivalent level of safety to
the engineered one, while slightly increasing driving efficiency

through faster motion and fewer turns (see Figure 15) [15].

VI. FUTURE OF MACHINE LEARNING IN MOBILE
ROBOTICS

Despite the impressive performance of the Crusher robot,
a crucial role remains for machine learning to improve the
performance and reduce the cost of developing autonomous
robotic systems. Conceptually, creating an autonomy system
involves three steps: defining the problem to be solved, de-
signing the architecture of the solution, and selecting good
parameters for that architecture. Defining the problem requires
translating performance goals for the robot into a precise
mathematical scoring function that provide a scalar evaluation
of the performance of a particular system. For instance, the
imitation learning approach used by the planning system
converts the high-level autonomous navigation goal of driving
safely and efficiently through a cluttered off-road environment
to a mathematical function that penalizes the planning system
for each example of expert human driving that it does not
consider to be “optimal”. Designing the architecture of the
system involves selecting the format of the input and output
data, and the general mathematical functions that will be used
to map inputs to outputs. Then parameters for each function
in the system are selected in order to maximize the scoring
function.

Currently, intermediate modules in Crusher’s perception
system, such as terrain classification, are not directly trained
to improve the final scoring function of the system, but
rather have been trained to solve tasks, i.e. classification
of voxels as “road”, “obstacle”, or “vegetation”, which we
believe will produce effective intermediate representations for
the overall system. It is unclear how to define those terrain
classes for any particular vehicle or even the best number
of terrain classes. Worse still, improved performance on an
intermediate task does not always translate into improved
navigational performance; the metrics on performance are
too weakly coupled. Instead, current work [17] is applying
methods from the emerging field of deep learning [18]–[20]
to learn parameters for intermediate modules that directly
optimize the final output of the system, i.e. providing “global
coordination” of the entire system. The global coordination
problem is hard to optimize however, as there are many local
maxima, so another promising technique, multi-task learning
[21], [22], finds related problems that provide cheap and
abundant training data, and learns from them a prior belief
about which parameter values will work well for each module.

Ultimately the goal of this learning approach is to use
human experts where they are most effective: to provide an
overall architecture for the solution and to define the problem
in intuitive but mathematically precise terms, and manage
the ”detail” work of tuning this architecture with automated
machine learning algorithms.

Additionally, transitioning mobile robotic systems to real-
world use requires an extraordinary degree of reliability. Small
problems resulting in mildly sub-optimal performance are
often tolerable, but major failures resulting in vehicle loss or
compromised human safety are not. Given the cost of such



9

systems and the importance of safety and reliability in many
of the tasks that they are intended for, even a relatively rare
rate of failure is unacceptable.

Roboticists develop and train their robots in areas rep-
resentative of those they are expected to operate in, only
to discover that they encounter new situations that are not
in their experience base that can lead to unexpectedly poor
performance or even complete failures. Since it is impossible
to prepare for the unexpected, one must assume that such
situations will arise during real-world operation. To mitigate
this risk a UGV must be able to identify situations that it is
likely untrained to handle before it experiences a major failure.

This problem can be framed as novelty detection: identifying
when perception system inputs differ dramatically from prior
inputs seen during training or previous operation. We have
achieved initial results in exploring online algorithms that
can compactly represent the past experiences of the robot in
order to identify potentially dangerous situations such as those
shown in Figure 16 [23]. With this ability, the system can
either avoid novel locations to minimize risk or stop and enlist
human help via supervisory control or tele-operation.

Fig. 16: It is important to identify objects that are not in the
systems experience since their interpretation in this case is highly
unpredictable. For example, the chain-link fence identified here as
novel has characteristics of sparse vegetation in many of its features
and would therefore get assigned a dangerously low traversal cost.

Finally, we concede that the complexity and unpredictability
of the real world forces robotic systems to adapt online. The
key is to identify the feedback that allows online training in as
many ways as is feasible, whether it is one part of the system
serving as an expert to train another or a human operator
serving as the expert at opportune times. We contend that
fully utilizing such techniques will enable robots to adapt
to and improve their performance in diverse environments
with minimal human involvement and greatly expand the
effectiveness and potential real-world applications of mobile
robotics.

REFERENCES

[1] A. Kelly, A. Stentz, O. Amidi et al., “Toward reliable off road au-
tonomous vehicles operating in challenging environments,” International
Journal of Robotics Research, vol. 25, no. 5-6, pp. 449–483, 2006.

[2] S. Thrun, M. Montemerlo, H. Dahlkamp et al., “Stanley: The robot that
won the DARPA grand challenge,” Journal of Field Robotics, vol. 23,
no. 9, pp. 661–692, June 2006.

[3] C. Urmson, J. Anhalt, D. Bagnell et al., “Autonomous driving in urban
environments: Boss and the urban challenge,” Journal of Field Robotics,
vol. 25, no. 8, pp. 425–466, 2008.

[4] A. Stentz, “Autonomous navigation for complex terrain,” Carnegie
Mellon Robotics Institute Technical Report, manuscript in preparation.

[5] A. Stentz, J. Bares, T. Pilarski, and D. Stager, “The crusher system for
autonomous navigation,” in AUVSIs Unmanned Systems, August 2007.

[6] T. Howard and A. Kelly, “Optimal rough terrain trajectory generation
for wheeled mobile robots,” International Journal of Robotics Research,
vol. 26, no. 2, pp. 141–166, 2007.

[7] N. Vandapel, D. Huber, A. Kapuria, and M. Hebert, “Natural terrain
classification using 3-d ladar data,” in Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, April 2004.

[8] D. Ferguson and A. Stentz, “Using interpolation to improve path
planning: The field D* algorithm,” Journal of Field Robotics, vol. 23,
no. 2, pp. 79–101, February 2006.

[9] D. Bradley, R. Unnikrishnan, and J. Bagnell, “Vegetation detection for
driving in complex environments,” in IEEE International Conference on
Robotics and Automation, April 2007.

[10] D. M. Bradley, “Learning in modular systems,” Ph.D. dissertation,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, August
2009.

[11] C. Wellington, A. Courville, and A. Stentz, “Interacting markov random
fields for simultaneous terrain modeling and obstacle detection,” in
Proceedings of Robotics Science and Systems, June 2005.

[12] R. Hadsell, J. A. Bagnell, and M. Hebert, “Accurate rough terrain
estimation with space-carving kernels,” in Proc. Robotics Science and
Systems, June 2009.

[13] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in ICML, 2003.

[14] D. Silver, B. Sofman, N. Vandapel, J. A. Bagnell, and A. Stentz, “Ex-
perimental analysis of overhead data processing to support long range
navigation,” in Proceedings of the IEEE/JRS International Conference
on Intelligent Robots and Systems, October 2006.

[15] B. Sofman, E. L. Ratliff, J. A. Bagnell, J. Cole, N. Vandapel, and
A. Stentz, “Improving robot navigation through self-supervised online
learning,” Journal of Field Robotics, vol. 23, no. 12, December 2006.

[16] N. D. Ratliff, D. Silver, and J. A. Bagnell, “Learning to search: Func-
tional gradient techniques for imitation learning,” Autonomous Robots,
vol. 27, no. 1, July 2009.

[17] L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting algorithms
as gradient descent,” in Advances in Neural Information Processing
Systems 12. Cambridge, MA: MIT Press, 2000.

[18] D. Silver, J. A. Bagnell, and A. Stentz, “Perceptual interpretation
for autonomous navigation through dynamic imitation learning,” in
International Symposium on Robotics Research, August 2009.

[19] M. W. Bode, “Learning the forward predictive model for an off-road
skid-steer vehicle,” Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-
RI-TR-07-32, September 2007.

[20] D. Silver, J. A. Bagnell, and A. Stentz, “Applied imitation learning for
autonomous navigation in complex natural terrain,” in Field and Service
Robotics, July 2009.

[21] ——, “High performance outdoor navigation from overhead data using
imitation learning,” in Proceedings of Robotics Science and Systems,
June 2008.

[22] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends
in Machine Learning, vol. to appear, 2009.

[23] Y. LeCun, U. Muller, J. Ben, E. Cosatto, and B. Flepp, “Off-road
obstacle avoidance through end-to-end learning,” in Advances in Neural
Information Processing Systems (NIPS 2005). MIT Press, 2005.

[24] R. Hadsell, P. Sermanet, M. Scoffier et al., “Learning long-range vision
for autonomous off-road driving,” Journal of Field Robotics, vol. 26,
no. 2, pp. 120–144, February 2009.

[25] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” Proceedings
of the 25th international conference on Machine learning, pp. 160–167,
2008.

[26] R. K. Ando and T. Zhang, “A framework for learning predictive
structures from multiple tasks and unlabeled data,” Journal of Machine
Learning Research, pp. 1817–1853, November 2005.

[27] B. Sofman, J. A. Bagnell, and A. Stentz, “Anytime online novelty
detection for vehicle safeguarding,” Robotics Institute, Carnegie Mellon
University, Tech. Rep., April 2009.


